What is Computational Engineering?

 Computational Engineering is a new paradigm where engineers write computer algorithms to encode the design process for an entire class of objects. This is in contrast to traditional engineering, where designs are created visually using a CAD program and the end result is a blueprint for just one physical part.

In the Computational Engineering paradigm, any object you create today, contributes to the code base of a development platform for the design of future objects of the same type. This codified aggregate body of knowledge of engineering enables us to create more and more sophisticated products over time.

LEAP71 is at the forefront of this new paradigm, having pioneered some of the underlying concepts of Computational Engineering. LEAP71 has released PicoGK, its foundational framework, as open-source.

A computational engineer breaks down an object into fundamental logical parts and builds dependencies, based on the the flow of information between these building blocks. In this first stage, the engineer is less concerned about how the resulting product will look like, but will focus on requirements, fundamental design rules, manufacturing methods, and physical constraints.

In the next step, the engineer will start encoding the construction logic. Given the constraints and the input parameters, how would a traditional engineer, with their domain knowledge and experience, create a three-dimensional design for the object? The initial implementation may be trivial, and serve as a placeholder geometry, until more advanced algorithms are developed.

The engineer will then iterate and build increasingly complex code that will result in more sophisticated output. To make the computational model robust, the engineer will sweep across a broad range of parameters and validate the resulting geometry, first visually, but increasingly by integrating either physical testing or numerical simulation.

 

The end result is a computational model of the design process for a certain class of objects. The software code will take the parameters and production constraints as input and output a manufacturable file.

This computational model can be deployed at scale, extended and improved by other engineers, and becomes tangible intellectual property in the form of a living code base.

Ready to work with us? Let’s talk.

Happy #52 birthday #UAE - let’s build an inspiring and #sustainable future - #madeindubai @miiteuae @dubai #nationalday @cop28uaeofficial

Coaxial swirl injector head created by RP/CEM, our #ComputationalEngineering Model for space propulsion systems.

CT scan of a #heatexchanger designed through #ComputationalEngineering #3dprinted by @aconity3d and scanned by @visiconsult

An impeller created through one of our #ComputationalEngineering models in @picogk

We just released PicoGK v1.1 our open-source framework for #ComputationalEngineering - it includes installers for macOS and Windows.

#copper #heatexchanger #3dprinted by our partner @aconity3d #ComputationalEngineering

Advanced spline-based #lattices created in @picogk

Behind the scenes: the copper and steel part of the #multimaterial metal #aerospike we #3dprinted with the @fraunhofer.igcv

#mutimaterial #metal #3dprinted #aerospike #rocket engine designed through our #ComputationalEngineering Model for space propulsion RP/CEM.

#3dprinted #multimaterial #metal #electricmotor demonstrator created by our #ComputationalEngineering Model for e machines. Thank you @fraunhofer.igcv and @dubaifuture Labs for the fantastic collaboration.

#wip visuals from our #ComputationalEngineering model for #heatexchangers - directly from the @picogk open-source viewer.

#electricmotors are great application for #ComputationalEngineering @picogk

With #cop28 coming up in @dubai - who wants to advance the engineering of cooling systems with us using #ComputationalEngineering?

Great to see all the large format metal 3D Printers coming to the market right now. We have a few interesting use cases. #ComputationalEngineering @picogk #additivemanufacturing

Parameter sweeping a #ComputationalEngineering Model for impellers

Built on #PicoGK

We released our entire foundational technology stack as open source today. PicoGK is a compact and robust geometry kernel for #ConputationalEngineering released under true permissive Apache 2.0 open-source license. Check out the LEAP 71 GitHub to download.

Made with #PicoGK.

Multi-axis robotic metal extrusion systems are an interesting option for producing large metal parts for aerospace.

Pumping #copper - impellers designed through our #ComputationalEngineering Models

Working on #cooling the planet? 🌎 let’s talk #ComputationalEngineering Models for #heatexchangers

Let’s generate some rockets using RP/CEM our #ComputationalEngineering Model for space propulsion

Congratulations to @tiiuae for releasing #AMALLOY the first metal 3D Printing alloy developed in the #uae. Here is one of our rocket injector heads, printed from the material. Designed using our #ComputationalEngineering model for space propulsion systems, RP/CEM. #adastra #3dprinting

How long does it take you to design an #impeller manually? It takes a few seconds using a #ComputationalEngineering model.

Happy #52 birthday #UAE - let’s build an inspiring and #sustainable future - #madeindubai @miiteuae @dubai #nationalday @cop28uaeofficial

Coaxial swirl injector head created by RP/CEM, our #ComputationalEngineering Model for space propulsion systems.

CT scan of a #heatexchanger designed through #ComputationalEngineering #3dprinted by @aconity3d and scanned by @visiconsult

An impeller created through one of our #ComputationalEngineering models in @picogk

We just released PicoGK v1.1 our open-source framework for #ComputationalEngineering - it includes installers for macOS and Windows.

#copper #heatexchanger #3dprinted by our partner @aconity3d #ComputationalEngineering

Advanced spline-based #lattices created in @picogk

Behind the scenes: the copper and steel part of the #multimaterial metal #aerospike we #3dprinted with the @fraunhofer.igcv

#mutimaterial #metal #3dprinted #aerospike #rocket engine designed through our #ComputationalEngineering Model for space propulsion RP/CEM.

#3dprinted #multimaterial #metal #electricmotor demonstrator created by our #ComputationalEngineering Model for e machines. Thank you @fraunhofer.igcv and @dubaifuture Labs for the fantastic collaboration.

#wip visuals from our #ComputationalEngineering model for #heatexchangers - directly from the @picogk open-source viewer.

#electricmotors are great application for #ComputationalEngineering @picogk

With #cop28 coming up in @dubai - who wants to advance the engineering of cooling systems with us using #ComputationalEngineering?

Great to see all the large format metal 3D Printers coming to the market right now. We have a few interesting use cases. #ComputationalEngineering @picogk #additivemanufacturing

Parameter sweeping a #ComputationalEngineering Model for impellers

Built on #PicoGK

We released our entire foundational technology stack as open source today. PicoGK is a compact and robust geometry kernel for #ConputationalEngineering released under true permissive Apache 2.0 open-source license. Check out the LEAP 71 GitHub to download.

Made with #PicoGK.

Multi-axis robotic metal extrusion systems are an interesting option for producing large metal parts for aerospace.

Pumping #copper - impellers designed through our #ComputationalEngineering Models

Working on #cooling the planet? 🌎 let’s talk #ComputationalEngineering Models for #heatexchangers

Let’s generate some rockets using RP/CEM our #ComputationalEngineering Model for space propulsion

Congratulations to @tiiuae for releasing #AMALLOY the first metal 3D Printing alloy developed in the #uae. Here is one of our rocket injector heads, printed from the material. Designed using our #ComputationalEngineering model for space propulsion systems, RP/CEM. #adastra #3dprinting

How long does it take you to design an #impeller manually? It takes a few seconds using a #ComputationalEngineering model.

© 2023 by LEAP 71 — All Rights Reserved